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Abstract 

A system of equations governing the incompressible flow through a multiple-blade-row 
turbomachine is presented.  These equations basically form the pseudo-compressible analog to the 
equations derived by Adamczyk [1984] for compressible, average-passage flow.  The methodology 
behind the derivation is outlined, including a closure model for the time-averaged form of the 
equations.   The equations are then preconditioned to facilitate numerical treatment.   An explicit 
numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite 
volumes is outlined for the approximate solution of the governing equations.  Convergence 
acceleration techniques, boundary conditions, and closure issues are also addressed for the 
numerical scheme.   Finally, results are presented for a simulation of the high Reynolds number 
flow through a two-blade-row, axial-flow pump.  These comparisons suggest that the pseudo- 
compressible average-passage equations can make reasonable predictions of the highly three- 
dimensional flow within a multiple-blade-row turbomachine operating in an incompressible flow 
regime.   However, especially in wake regions, it is clear that the behavior of the algebraic eddy 
viscosity model~at least with the present grid-requires improvement for the accurate prediction of 
the evolution of the downstream velocity field. 
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Nomenclature 

outward directed area of a cell face; 

circumferential averaging operator 

pressure coefficient = 
P -P, ref 

1     A/2 
2PV.f 

CFL Courant-Friedrichs-Lewy number (or Courant number) 

d artificial dissipation flux 
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E vector of discrete spatial terms 
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H flux vector in the tangential direction 

HIREP high Reynolds number pump 

ij,k indices 
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Nomenclature (Cont.) 

K source term from cylindrical coordinates 

p - p f 
K pressure coefficient =  — 

L three-dimensional flux operator 

LDV laser Doppler velocimeter 
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p static pressure 

P preconditioning matrix 

q portion of the eigenvalues 

Q vector of dependent variables 

r radial independent variable < 

R residual 

R * implicitly-averaged residual 

R^j stress tensor 

RANS Reynolds-averaged Navier-Stokes 

Re Reynolds number 

S source term from average passage 

t time 
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^(2)^^(4) second- and fourth-diffemence artificial viscosity factor 
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V kinematic viscosity; 

pressure gradient switch 

v^ eddy viscosity 
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p fluid density (constant) 
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Subscripts 
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1. Introduction 

In recent years, the design and analysis of turbomachinery has increasingly turned to 
numerical computations in order to improve estimates of this complex flow field.  The improved 
estimates of this three-dimensional, viscous (turbulent) flow becomes even more important when 
dealing with turbomachines with a multiple number of blade rows.  Most of the recent advances in 
this area have dealt with compressible flow.   This report summarizes work to extend numerical 
computations of multiple-blade-row turbomachines to incompressible flow. 

First, this report outlines the mathematical basis of the average-passage representation of a 
multiple-blade-row turbomachine.  Specifically, starting with the Navier-Stokes equations, 
Chapter 2 describes the basic methodology that leads to the incompressible average-passage 
equations.  Then, the closure problem associated with this representation is discussed, followed by 
a description of a closure model appropriate for a single-stage (two-blade-row) turbomachine 
operating incompressibly.  Finally, the governing equations are cast in a preconditioned, pseudo- 
compressible form that is more appropriate for numerical approximation. 

After establishing the mathematical model, we describe the numerical technique used to 
approximate a steady-state solution to the system of equations presented in Chapter 2.  Specifically, 
Chapter 3 describes the spatial and temporal discretizations of the governing equations, along with 
the acceleration techniques used to expedite the achievement of a steady-state solution to the 
discrete equations.  Then, we give a brief description of the boundary conditions appropriate for a 
pseudo-unsteady, average-passage representation of a blade row.  Finally, Chapter 3 addresses the 
numerics of the closure model proposed in Chapter 2 for a single-stage machine. 

With the development of a computer code called ISTAGE that numerically solves the 
average-passage equations for an incompressible flow, we computed an experimentally-measured 
flow field as a first step towards code validation.  Zierke, Straka, and Taylor [1993] acquired 
measurements in the high Reynolds number pump (HIREP) facility, during an experimental 
program that was performed in parallel with the numerical program described herein.  The 
numerical computations of this incompressible flow of water through a two-blade-row pump were 
performed as a prediction, using a uniform inflow rather than the experimentally measured inflow. 
Chapter 4 shows a large number of comparisons between the numerical predictions and the 
experimental data, resulting in a good measure of the current status of our numerical model. 



2. Governing Equations 

In this chapter, the derivation of the average-passage equation system is briefly described. 
In his original derivation, Adamczyk [1984]  outlined a more rigorous treatment for compressible 
flow.  Begirming with the Navier-Stokes equations, we describe the general form of the average- 
passage equations for incompressible flow, including the averaging operators that are used in their 
derivation.  This is followed by a description of a simple closure model to estimate the resulting 
body forces and correlation terms.  Finally, the equations are cast in a preconditioned pseudo- 
compressible form better suited for numerical treatment. 

2.1 Navier-Stokes Equations 

The starting point for the derivation of the average-passage equations is the incompressible 
Navier-Stokes equations in cylindrical coordinates.  They are given as follows: 

^.ll(ru).l^=0, (2.1) 
dz       X  dx      '       X   86 

^"z       9,2       .      13,       ,      Id 
—- + — (M^  + P) + (ruu) +  

(2.2) 

and 

9/N       Id,     V       13,^ 

dz r  dr      ^       r dO    ^ 

1/2 X       9/x      19/\      19,   X 

9/N       d   ,       ^       19,9      \       19r/2       M 

9,     .       19, 2\      19,     V 

(2.3) 

(2.4) 

Respectively, these equations represent the conservation of mass, axial momentum, radial 
momentimi, and angular momentimi.   The thermal energy equation is not included because it is 
decoupled from the above equations if the kinematic viscosity is assimied to be constant. 
Equations 2.1 through 2.4 are written in terms of nondimensionalized dependent and independent 



variables as discussed later.  The shear stress terms in the Navier-Stokes equations are given by 
the following: 

2    du 
T      =   —   —1   , 
''     Re   dz 

2_  3M, 

Re "a7 ' 

• aa 
Re 

1 ^ + ^ 
r   dd        r 

1 du        du 
T     =   T      = ' +      ^ 
^       "    Re dz        dr 

^a = ^ez Re 
2 ^ + ^ 
r   dd       dz 

and 

re 'Or 'Re 

]^ du^ ^ dUg 

1 'de   * ~dr r 

where the reference Reynolds number is defined as 

Re r^ ^ 

For the above equations, the following nondimensionalizations apply: 

Z'J-     r--L     ,,''"'1 

and 

M. u M« 

^r^ ^ref ^r^f P^^U^f 



with the assumption of incompressibility giving 

and 

p = A ^ 1.0 

. = J^ -  1.0 . 
"ref 

For completeness, the shaft rotation rate is nondimensionalized as 

fi =  ^ . 

In the above, a tilde (~) denotes a dimensional quantity and the subscript "ref' denotes a reference 
quantity.  In this work, the equations are applied to the flow through a turbomachine.  The 
reference length is taken to be the machine diameter and the reference velocity is taken to be the 
average velocity through the inlet of the machine (that is, the mass flow divided by the inlet area). 
The reference density and viscosity are taken from the properties of the working fluid. 

Equations 2.1 through 2.4 represent the starting point for all of the analysis that follows in 
the remainder of this report.  Note that in their present form, these equations are exact—they are 
the equations governing the unsteady motion of an incompressible fluid.  However, because of the 
lack of a time derivative in Equation 2.1, the equations cannot be written as a complete system of 
tune evolution equations (unlike the equations governing compressible flow).  Ultimately, this 
difficulty will be rectified by restricting the interest to steady-state solutions, permitting the familiar 
pseudo-compressibility assumption.  However, this is done only after the derivation of the average- 
passage equations of motion. 

2.2 Average-Passage Equations 

The average-passage equations govern the "average" flow within a blade passage embedded 
in a multiple-blade-row turbomachine.   Deriving equations that govern an averaged flow field is a 
familiar exercise.  Ensemble (or Reynolds) averaging the Navier-Stokes equations to yield the so- 
called Reynolds-averaged Navier-Stokes (RANS) equations is a well known procedure used to 
formulate equations describing turbulent (nondeterministically unsteady) flows in some "average" 
sense.  In that case, the term "average" means steady or, at most, deterministically unsteady.  For 
the average-passage equations, the term "average" is understood to be flow that is steady and 
spatially periodic over the pitch of the blade row of interest.  Clearly, if a turbomachine has M 
blade rows, there are, in general, M associated average-passage flow fields; that is, each blade row 
has a representative or average passage. 

Adamczyk [1984] developed the average-passage equations by the sequential application of 
three distinct averaging operators to the Navier-Stokes equations within a multiple-blade-row 



environment.   The resulting equations thus describe the flow through a referenced blade row 
embedded in a multiple-blade-row turbomachine in a steady, spatially periodic sense that is unique 
to the referenced blade row.  A difficulty associated with this averaged system of equations, 
however, is the necessity to provide body forces and temporal and spatial correlations to properly 
account for the effects of neighboring rotating and stationary blade rows on the referenced blade 
row.  Analogous to Reynolds averaging, the correlations are a direct result of the nonlinear 
convection terms in the governing equations and must be modelled by additional equations or 
empirically-based approximations.   These operators are briefly described in this section. 

2.2.1 Ensemble Averaging 

The first operator applied to the governing equations (2.1 through 2.4) is the familiar 
ensemble (or Reynolds) averaging operator.  For an arbitrary function, /, this averaging operation 
is defined as 

7 = lim 1 E ^ (2.5) 
A^oo    A'    , = 1 

where f. is the /"■ realization of /.  The function can then be decomposed into an ensemble- 
averaged component plus a random component, that is 

  A 

where, by construction, 

/ = 0. 

It is important to note that the ensemble averaging operator commutes with both temporal and 
spatial differentiation. 

The procedure for ensemble averaging the governing equations begins with decomposing 
the velocities and pressure in Equations 2.1 through 2.4 according to Equation 2.6.  The equation 
is then operated on by Equation 2.5, taking advantage of its commutative properties with 
differentiation.  The result is the familiar Reynolds-averaged Navier-Stokes equations.  The RANS 
equations are merely the Navier-Stokes equations with the dependent variables replaced by their 
ensemble-averaged counterparts and with the inclusion of some additional stress-like terms.  These 
apparent or "Reynolds" stresses are a direct result of the nonlinear convection terms and involve 
correlations of the randomly flucmating components of velocity.  To solve the RANS equations 
requires some approximation or modelling of these terms.  This is the familiar closure problem of 



turbulent flow prediction.  There are in existence a myriad of models available for Reynolds stress 
closure.  A fairly standard model is utilized in this work and is described in the next chapter. 

In essence, by solving the RANS equations (after providing some appropriate model for the 
Reynolds stresses), a deterministic flow field is sought with the effects of the random fluctuations 
in the variables accounted for in some average sense.  Conceptually, this is what is intended for 
two additional averaging operations:  time averaging and passage-to-passage averaging. 

2.2.2 Time Averaging 

The second step in the derivation of the average-passage equations is the application of a 
time-averaging operator to the ensemble-averaged governing equations.  The operator is designed 
so that it may be applied everywhere in the flow domain including the regions within rotating blade 
rows.  Basically, this operator averages its operand over a period equal to one shaft rotation.  The 

form of this operator acting on an ensemble-averaged function, / , is given by 

fi        1 / = Ji_L      I      H{t)f{t)dt (2.7) 

where 
Q = shaft speed 
Xj^ = geometric blockage of the neighboring rotating blade row(s) 
H{t) = "gate" function. 

The purpose of the gate function is to permit the application of the operator everywhere in 
the flow domain.  By definition, H is equal to one everywhere outside of a neighboring rotor blade 
row; at a point within a neighboring rotor blade row, H is equal to one for all times that the point 
is immersed in fluid and equal to zero whenever the point lies within a passing blade.  The ratio of 
time for which the gate function equals one to the time for which it equals zero is a measure of the 
geometric blockage, X^, of the neighboring rotor blade row. 

The ensemble-averaged function, /, can now be decomposed into two components such 

that 

/ =/ +/ 
(2.8) 



where 

J   = time-averaged component, 

A. 

/ = deterministic unsteady component, 

and, by construction, 

.     / - 0. 

Unlike the ensemble averaging operator, time averaging does not, in general, commute with 
differentiation.  Due to the presence of the gate function, there arise additional terms in the 
interchange of averaging and differentiation.  The consequences of this are discussed subsequently. 

Time averaging the ensemble-averaged Navier-Stokes equation proceeds by decomposing 
the dependent variable in the RANS equations according to Equation 2.8 and operating on the 
resulting equations using Equation 2.7.  In a manner completely analogous to ensemble averaging, 
the time averaging procedure gives rise to terms akin to Reynolds stresses.  These apparent or 
"mixing" stresses are a direct result of the deterministic unsteadiness (that is, unsteadiness that 
correlates with shaft speed) within the flow field due to the presence of both rotating and stationary 
blade rows.  Additionally, however, the interchange of time averaging and differentiation gives rise 
to forcing terms proportional to the average pressure loading and shear stress on the surfaces of the 
rotating blades.  Time averaging thus gives rise to a set of body forces as well as an additional set 
of mixing stresses (or temporal correlations) that must be modelled along with the Reynolds 
stresses. 

It is important to recall the working definition of the average-passage flow field for a given 
blade row embedded in a multiple-blade-row environment.  The average-passage flow field for a 
given blade row is constructed to be steady and spatially periodic over the pitch of the blade row. 
For a single-stage machine (or a multi-stage machine whose respective stator and rotor blade rows 
all have integral-multiple blade counts), subject to an axisymmetric inflow and outflow, the time- 
averaged flow field is the average-passage flow field.  That is, ensemble and time averaging are 
sufficient to render the flow field steady and spatially periodic over the pitch of each of the blade 
rows.  Thus, to calculate the average-passage flow for a case such as this requires only the 
modelling of the time-averaged Reynolds stresses (from ensemble averaging) and body forces and 
temporal correlations (from time averaging). 



2.2.3    Passage-to-Passage Averaging 

In more general multiple-blade-row configurations, the number of blades in a given blade 
row is typically chosen such that it is not an integral multiple of the number of blades in any other 
blade row.  As such, in general, the time-average flow relative to some blade row will not be 
spatially periodic over the pitch of that blade row.  To force this spatially aperiodic flow field to be 
periodic requires the application of a third averaging operator.  This is the so-called passage-to- 
passage averaging operator.  Using the methods of Fourier analysis, this operator averages out the 
passage-to-passage variations of the time-averaged flow field for a given blade row while 
accounting for the global effect of these variations through an additional set of body forces and 
momentum mixing correlations.  The form of this operator acting on the time-averaged variable, 

/, is given by 

2T 

where 

2» _ 

^^   =   ^      \       G(0)/(0)e^ 

and 
m = number of blades in the referenced blade row 
A,j = geometric blockage of the neighboring stationary blade row 
G(e) = "gate" function. 

Once again, the purpose of the gate function is to permit the application of the operator 
everywhere in the flow field.  Analogous to the definition of the gate function, H, for the time 
averaging operator, G is equal to one everywhere outside of neighboring stator blade rows; within 
neighboring stator blade rows, G is equal to one outside of the blades and equal to zero within the 
blades.  The ratio of the angular position for which this gate function equals one to the angular 
position for which it equals zero is a measure of the geometric blockage, k^, of the neighboring 

stator blade row.  The time-averaged function, /, can now be decomposed into two components 



such that 

  A, 

/=/+/' (2.10) 

where 

/ = passage-to-passage-averaged component 

/ = spatially aperiodic component. 

By construction, the passage-to-passage-averaged component, / , is spatially periodic over 

the pitch of the referenced blade row.  Once again, unlike the ensemble averaging operator, the 
passage-to-passage averaging operator does not, in general, commute with differentiation.  As with 
the time averaging operator, the presence of the gate function, G, in the passage-to-passage 
operator gives rise to additional terms from the interchange of averaging and differentiation.  Note 
also that because the passage-to-passage averaging operator is constructed with its periodicity equal 
to that of a referenced blade row, there will be a unique average-passage flow field for each blade 
row in a multiple-blade-row turbomachine. 

Finally, to reduce the average-passage equations from the time-averaged equations of 
motion requires the application of the decomposition. Equation 2.10, and the passage-to-passage 
averaging operator. Equation 2.9, to the time-averaged equations.  As with time averaging, this 
procedure yields an additional set of Reynolds stress-like terms.  These terms represent mixing 
correlations arising from passage-to-passage flow variations in the time-averaged flow field. 
Additionally, the interchange of passage-to-passage averaging and differentiation gives rise to 
additional forcing terms related to the time-averaged pressure and shear stress loadings on the blade 
surfaces of neighboring stator blade rows.  In short, passage-to-passage averaging yields yet 
another set of body forces and mixing stresses (spatial correlations) to be modelled in addition to 
those resulting from ensemble and time averaging. 



2.2.4 Modifications to the Navier-Stokes Equations 

The average-passage equations are essentially the Navier-Stokes equations with some 
additional terms and with the dependent variables understood to be ensemble, time, and passage-to- 
passage averaged.  There are additional mixing stress terms that are due to nonlinear interactions of 
turbulent fluctuations, deterministic time-dependent fluctuations, and fluctuations due to spatial 
aperiodicities.  In essence, the shear stress terms in Equations 2.2 through 2.4 can be thought of as 
being augmented in the following way: 

'ij        'ij       '\j  ' 

where / andy take on all combinations of z, r, and 6, and 

R.,   =   Ufi:   +   M. M «. «. 
(2.11) 

I]        I J        I   ] •*, "■] 

The first term in Equation 2.11 represents the passage-to-passage, time-averaged Reynolds stress; 
the second term represents the passage-to-passage-averaged mixing stress due to deterministic 
unsteadiness; and the last term represents a mixing stress due to the steady aperiodic velocity field. 
There are also forcing functions that account for the average effects of pressure and shear stress 
loadings from neighboring rotating and stationary blade rows.   For the sake of brevity, the full 
equations are not listed here (see Adamczyk [1984]).  The modelling of the tensor (2.11) as well as 
the body force terms from time and passage-to-passage averaging constitutes the closure problem 
for the average-passage system of equations. 

In this work, only the closure problem associated with the ensemble and time averaging is 
addressed.  As such, it is more convenient to handle only the Reynolds stresses as additional, 
apparent stresses and to "limip" together all of the mixing stresses and body forces from time 
averaging into a single source term.  A model for computing this source is presented in 
Section 2.3.  With this in mind, the vector form of the average-passage equations for a given blade 
row rotating at a shaft speed, Q , can be written as 

i_(X0 + i.(Xf) + 1 i- (KrG) ^ il^iXH) =\K -\S , (2.12) 
at, dz r dr r dd "] 

where 

F = F,-F^,   G = G,-G^,   H- H,- H^,   K = K, - K^ , 

and the subscripts "/" and "v" denote the inviscid and viscous portions of the flux vectors. 
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Equation 2.12 includes the following vector definitions: 

Q 

H  = 

0 «z «. 

= .      F,- .        G   = 

■ 

rUe ra«, rM«, 

«. 0 ■ 0 

.      ^, = 
0 

^(Ue^p) >               ^v   = 

riUe^e^l ') 0 /■^rf 

0 -. ' 0 " ■ 0 

V .            ^v   = 

0 

0 

where 
w. = «„ rfl 

A = geometric blockage of neighboring blade rows 
5 = source term containing the body forces and correlations unique to the average passage 

system of equations. 

Several things need to be clarified about the above equations.   First, note that in each term of 
Equation 2.12, there appears a scale factor multiplying the dependent variables.  This blockage 
factor is a purely geometrically-derived scalar.  Relative to a given blade row, it represents the 
physical blockage due to the presence of each neighboring blade row that has been, in effect, 
"smeared" by the application of the averaging operators.  It is not an additional dependent variable; 
it may be calculated a priori for each blade row in a multiple-blade-row turbomachine. 
Additionally, the shear stresses in the above viscous vectors include the additional Reynolds 
stresses, that is, the first term in Equation 2.11.  It is important to note also that in Equation 2.12, 
all of the dependent variables are interpreted as average-passage variables (that is, the triple 
overbar notation is assumed); for example. 

",=*«,, 

^;« =* '■rf ' ^^ cetera. 

U 



In this work, the integral form of Equation 2.12 is taken as the basic system of governing 
equations for the average-passage flow in a multiple-blade-row environment.   That is, 
Equation 2.12 is integrated over a volume and, following an application of Gauss' theorem, the 
result is 

^—(\Q)dV + j[\FdA^ + XGdA^ + XHdA^]   =    iXKdV -   (xSdV . (2.13) 

Equation 2.13 forms the basis for the numerical treatment of the average-passage equations. 

In summary, carrying out the averaging procedures described in this chapter on the Navier- 
Stokes equations relative to a given blade row, has resulted in the following.  As a result of 
ensemble averaging, the random fluctuations of the dependent variables associated with turbulent 
flow have been replaced with an additional mixing (Reynolds) stress acting throughout the flow 
domain.  As a result of time averaging, any blade rows that are rotating relative to the reference 
blade row have been, in effect, "smeared"; their presence accounted for through a body force 
distribution in the region occupied by the rotating blade and a mixing stress due to the deterministic 
unsteady velocity field of the rotating blade row acting throughout the flow domain.  As a result of 
passage-to-passage averaging, all blade rows that are stationary relative to the reference blade row 
and that do not have integral-multiple blade counts have also been "smeared"; their presence 
accounted for by an additional body force distribution and mixing stress due to the spatially 
aperiodic flow associated with the smeared blade row.   The resulting average-passage equations 
thus consist of the Navier-Stokes operator (acting on the average-passage dependent variables 
relative to a given blade row) plus a series of body force and mixing stress terms.   The problem of 
how to model the body force and mixing stress terms is the closure problem for the average- 
passage formulation.  A simple closure model developed for inviscid flow through a single-stage 
machine is briefly described in the following section.  Though in significantly less detail, it is taken 
direcfly from Adamczyk, Mulac, and Celestina [1986]. 

2.3 Closure Modelling for the Time-Averaged Equations 

The focus of this work is to numerically approximate a steady solution to Equation 2.13 for 
a single-stage turbomachine.  A single-stage machine consists of one stationary and one rotating 
blade row.   As mentioned previously, the time-averaged equations in such a case are steady and 
spatially periodic and, as such, are the average-passage equations.   The closure problem is then to 
model the Reynolds stresses and the body forces and temporal correlations associated with time- 
averaging.  As such, the mixing stress takes the following form: 

(2.14) 
T TT ^     ^^ 

where the first term is the time-averaged Reynolds stress and the second term is the mixing stress 
due to deterministic unsteadiness. 
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The Reynolds stresses are grouped with the laminar stresses so that they may be modelled 
using an effective or "eddy" viscosity construction. In this work, the eddy viscosity model is the 
familiar algebraic model of Baldwin and Lomax [1978].  It is briefly described in the next chapter. 

Recall that in Equation 2.13, all of the average-passage mixing stresses and body force 
terms were grouped into the source term, 5.  Adamczyk, Mulac, and Celestina [1986] devised a 
method for computing 5 for an inviscid single-stage machine.   The method has the very attractive 
feamre that the source term for, say, blade row 1 can be computed from the average-passage 
solution for blade row 2 and vice versa. 

For the body force calculation, it may easily be shown that if it is assumed that the 
ensemble- and time-averaged pressure loadings of the blades are approximately equal, then, 
knowing the time-averaged solution for blade row 1, one can calculate its body force representation 
in the frame of reference of blade row 2.  This type of body force representation is axisymmetric. 
Obviously, this also applies to the body forces due to blade row 2 acting in the frame of reference 
of blade row 1. 

To model the remaining mixing stress terms (that is, the second term in Equation 2.14) in 
the frame of reference of blade row 1, for example, the following methodology is used. 
Decompose the /* velocity component in the frame of reference of blade row 1 into two 
components (for convenience the overbar-hat notation is understood); that is, 

u. = «f' + «.' , 

where 
«. = ensemble-averaged, deterministic unsteady velocity component for blade 

row 1 

M/^' = velocity component that is steady with respect to blade row 2 
«/ = velocity component that is unsteady with respect to both blade rows. 

The second term in Equation 2.14 then becomes 

As argued by Adamczyk, Mulac, and Celestina [1986], the correlations involving u.' can be 

expected, in general, to be much smaller than those associated with «®.  With this in mind, the 
last three terms in Equation 2.14 are neglected and the following approximation is made: 

i?, - 1^ . (2.15) 

In effect, the above approximation asserts that the dominant unsteady correlation for blade row 1 is 
that due to the steady hydrodynamic loading of blade row 2 and all correlations associated with the 
blade row interaction velocity field are assumed to be comparatively small and are neglected. 

Along with the assumptions regarding the body force calculation for blade row 1, the 
temporal correlation. Equation 2.15, can be shown to be axisymmetric and can be evaluated from 
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the steady average-passage flow field of blade row 2.  Applying the same assumptions to the body 
force and temporal correlations from blade row 1 in the frame of reference of blade row 2 will 
yield completely analogous results.  As a result, a rather simple equation can be derived for the 
total average-passage source for a single-stage turbomachine.  For the /* blade row, it is given by 

{SiQ^'^)AdV = A[LiQ^''^) -  {Ki(^^)dv] - { L^(^e*'^) -  {K(AQ<--^)Adv} ,   (2-16) 

where 
L = surface integral on the left-hand side of Equation 2.13 
A = circumferential averaging operator 
L^ = axisymmetric form of L 
Qf-''> = vector of average-passage dependent variables for the i"' blade row. 

In words, the average-passage source term for a given blade row is simply the difference 
between the circumferential average of the three-dimensional flux operator acting on the three- 
dimensional flow variables and the axisymmetric flux operator acting on the circumferentially- 
averaged, three-dimensional flow variables.  Thus, the governing equations for blade row 1, for 
example, will be given by 

1^' 
iXK^'^dV -  iXS^^^dV , ^^■^'^^ 

where the superscript refers to the blade row and the last term on the right hand side is given by 
Equation 2.16 with / = 2 (an analogous equation exists for blade row 2). 

Another result of the assumed form of the average-passage source term is the property that, 
at steady-state, the circumferential average of the three-dimensional, average-passage flow fields 
for both of the blade rows will be identical.  In the numerical solution of the average-passage 
equations, this property of the governing equations will be useful as a global convergence criterion. 

2.4 Pseudo-Compressibility and Preconditioning 

The differential form of the governing equations (Equations 2.12) does not represent a 
complete system of time evolution equations-note the zero element in Q.  Because the interest here 
is in a steady-state solution to Equation 2.12, we are free to alter the time-dependent portion of the 
governing equation to hasten the achievement of a steady solution.  The basic idea is to cast 
Equation 2.12 in a slightly modified form such that the mathematical character of the modified 
equation mimics that of the compressible Euler and Navier-Stokes equations.  The modified 
equations may then be treated numerically using techniques developed for the compressible flow 
equations of motion.  This reformulation is referred to as the "pseudo-compressibility" approach 
and was originally proposed by Chorin [1967] and expanded upon by Turkel [1986], among others. 
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The pseudo-compressible form of Equation 2.12 is obtained by simply replacing Q in that 
equation by U where 

U = 

P 

In this work, the time derivative in the governing equations is multiplied by a "preconditioning" 
matrix, P, where 

P = 

1 0  0 0 

(a+l)«, 
1  0  0 

/3^ 
0  1  0 

{a + l)rUg + yr^Q 
0 n 1 

and a , p , and y are constant parameters that are used to "tune" the transient behavior of the 
system to accelerate convergence to a steady-state solution. 

The pseudo-compressible form of Equation 2.12 is thus given by the following: 

\K -\S . 
at. dz r dr r dd 

(2.18) 

Briefly, some elaboration is needed regarding the choice of the preconditioning parameters.  It is 
apparent that for a = -1 and y = 0 (or Q = 0), the matrix P becomes the original "artificial 
compressibility" preconditioner developed by Chorin [1967], with P acting as a pseudo-acoustic 
speed.  Also, for y = 0 (or Q = 0), P becomes the preconditioning matrix developed by 
Turkel [1986], with a and p acting as parameters to "tune" the wave speeds of the system to 
maximize convergence to steady state.  Turkel [1986] presented some guidelines for choosing the 
optimal values of a and p .  In his work, Turkel [1986] chose a to be a constant and P to be 
scaled locally with the velocity magnitude.  In this work, we chose both a and p to be constants. 
Additionally, the inclusion of the y term in the matrix is intended to render the transient behavior 
of the system independent of the shaft rotation rate Q .  It turns out that if y is taken to be equal 
to -1, the eigenvalues of the inviscid flux Jacobians (that is, the signal propagation speeds of the 
system) can be shown to be algebraically independent of Q .  Based on results obtained in two 
dimensions for moving cascades, we decided to "hard wire" this value of y for all of the three- 
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dimensional calculations.  In the cascade calculations, we found that for a given choice of a and 
P , the convergence to steady-state could be made for any value of the blade speed if y was equal 
to -1.  For other choices of y , « and/or p would sometimes require adjustment to obtain 
convergence for different blade speeds.  In summary, for the numerical simulation presented in 
Chapter 4, we used the preconditioning parameters of a = 0.0, P = 2.5, and y = -1.0. 

To yield the equations that are to be solved numerically. Equation 2.18 is integrated over a 
volume.  The result can be written as 

[ P—(\U)dV + f[kFdA^ + \GdA^ + \HdA^] =  [ \KdV -  [ XSdV . (2.19) 

It can easily be shown that the introduction of pseudo compressibility (that is, substituting the 
vector U and the matrix P into the governing system of Equation 2.12) changes the inviscid form 
of the equations (Re ^ oo) to a. system of hyperbolic equations analogous to the equations 
governing inviscid, compressible flow. This is useful in that it permits the use of the large variety 
of numerical techniques developed for the steady solution of the compressible equations of motion. 
Here, an explicit finite-volume technique is utilized for the numerical approximation of the steady- 
state solution of Equation 2.19.  This is discussed in the following chapter. 
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3. Numerical Discretization 

In this chapter, the numerical technique utilized to solve the steady-state average-passage 
equations for a single-stage turbomachine is outlined.  First, the spatial discretization is described. 
It consists of a finite-volume technique along with a model for an artificial dissipation operator 
necessary for numerical stability.   This is followed with a description of the explicit multistage time 
integration procedure utilized along with several convergence acceleration techniques-local time 
stepping, implicit residual averaging, and multigrid.  Next, the boundary conditions required by the 
average-passage simulation are briefly described.  This chapter ends with a description of the 
numerical treatment of the average-passage closure models. 

3.1 Cell-Centered Finite-Volume Discretization in Space 

A generic flow domain is schematically depicted in Figure 3.1 where the relevant 
coordinate systems are identified.  This domain is discretized into a series of contiguous hexahedral 
cells.  The numerical approximation of the governing system of equations. Equation 2.19, begins 
with the standard cell-centered finite-volume discretization for hexahedra.  That is, for a hexahedral 
cell. Equation 2.19 is numerically integrated in space to yield 

"'i -"=1 (3.1) 

= O^,,yol,., - QS),.,Vol,., , 

where the subscript "ijk" denotes the (i,j,k) "^ control volume or cell, m denotes the m"^ face of the 
cell, Vol denotes the cell volume, and A^, A„ and Ag are components of the outward directed area 
of a cell face. 

In Equation 3.1, the dependent variables are defined at the center of a control volume and 
are taken to be an average value for the cell.  Figure 3.2 depicts the (ij.kf cell with its defining 
grid points.  The cell volume is computed using a tetrahedron decomposition procedure.  The 
directed areas in Equation 3.1 are computed using the cross product of the diagonals of each cell 
face.  Figure 3.3 shows the directed areas of a typical cell. 

If all of the spatial terms in Equation 3.1 are collectively denoted by E, then Equation 3.1 
may be written more simply as 

-^m,,Vol,,, - PylEilD^j, = 0 . (3.2) 

The portions of E representing facial fluxes are approximated using simple arithmetic averaging of 
neighboring cell-centered quantities.  As such, it may be easily shown that for uniformly spaced 
grids in cylindrical coordinates. Equation 3.2, in its present form, amounts to a central-difference 
approximation to Equation 2.18.  It is well known that central-difference approximations of the 
Euler equations or high Reynolds number Navier-Stokes equations requires the addition of some 
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artificial damping terms for stability.  With the inclusion of these terms, Equation 3.2 becomes 

^{\U),,Vol^j, - P^E(U)^, . DiU)^., = 0 , (3.3) 

where D is the artificial dissipation operator. 

3.2 Artificial Dissipation 

The artificial dissipation operator used in this work is modelled after the operator originally 
proposed by Jameson, Schmidt, and Turkel [1981] for transonic flow, with modifications for 
highly-stretched grids suggested by Martinelli [1987].  In the present implementation, the 
assumption of pseudo-compressibility results in some slight modifications and simplifications. 

The purpose of adding artificial dissipation terms is to provide damping of error waves in 
the solution domain.  An effective operator can be constructed by looking at the natural dissipation 
inherent in upwind differencing.  In other words, a form for the dissipation operator can be 
suggested by determining what form D should take so that when it is combined with the central- 
differenced, preconditioned convection terms (as in Equation 3.3), the result will approximate an 
upwind differencing of just the preconditioned convection terms.   The actual form of the 
dissipation will depend on the type of upwind differencing considered; first-order upwinding will 
result in a Laplacian form for D, while second-order upwinding will yield a D of biharmonic form. 
In both cases, the proper form for the dissipation will scale with the signal propagation speeds (or 
wave speeds) of the preconditioned convection terms.  The signal propagation speeds are 
determined by the eigenvalues of the flux Jacobian matrices formed by the inviscid flux vectors Fj, 
G„ and H^. 

Jameson, Schmidt, and Turkel [1981] originally devised an artificial dissipation operator 
that was a combination of second- and fourth-difference operators with the relative amounts of each 
determined by the flow solution.  Additionally, both terms in his operator were scaled by the 
maximum wave speeds or, more precisely, by the spectral radii of the inviscid flux Jacobians. 
Although their original implementation was for transonic flow, the same methodology for the 
construction of the dissipation operator is followed in this work. 

In a three-dimensional application (such as in this work), the dissipation operator is 
constructed separately in each of the coordinate directions using the above methodology. The 
general form of the operator can thus be written as 

DiU),, = D^ilD^j, . Z),(f/)., - D^ilD^j^ , (3.4) 

where r\, C, and I denote the i,j, and k computational directions, respectively.  Note, in the 
following, for illustrative purposes, only the T]-direction is considered in detail; the other 
directions follow analogously. 
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Following the original formulation, a fully conservative dissipation operator is constructed 
containing both second and fourth differences with, for example. 

7 I 
(3.5a) 

where 

.(2) .(4) d   1  = {e''\ A   - e^'^ A   )U. i 
•*j        ^    i*^      1 i*^     VR'     I*^ (3.5b) 

and A^ and A^^^ are undivided first and third difference operators in the T]-direction (note that 

the subscriptsy and k are hnplied in all terms).  For the coefficients e^^^ and 6^"*^ eigenvalue 
scaling is used.  Specifically, these coefficients are defined to be proportional to a blending of the 
spectral radii of the preconditioned inviscid flux Jacobians in Equation 3.3; the reason for the 
blending will be described shortly.  The second and fourth-difference dissipation scale factors are 
given by 

.(2) ^:>  =^'^'^'<^,,, min(.   ■ ,1.0) (3.6a) 

and 

£<^ =max(JK(^)<A,. , -e'^ ,0.0), 
I/, 

(3.6b) 

where 

v.i  = max (;/.,;/.,,)   ,    v. 
T. 

Pi-x - 2^ + A., 

Pi-l  * ^Pi + Av, 

(3.7) 

0   = -^  1 ^1      3    ' 

f          ^ «           f          •\i\ 
"^^ ^. 

1    + r + 

1 n , 

(3.8) 

and 

^, = M, , ^, = \^, , ^, = \^, . 
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In the above, i|f^ , \\i^, and ij;^ are the maximum wave speeds in the respective computational 

coordinate directions and X is the geometric blockage factor.  For example, in the TI -direction. 

^, = !(,, . ^;. 4/3^5) , (3.9) 

where 

o   = (1 - a)(V-A^) , 

S^ = A" -A" , 

A" = A^e^ + A^e^ + A^e, 

and 
V = velocity vector 
A' = the directed area of an TI  = constant cell face 
e^, e^, and e^ = unit vectors in thez, r, and 6 directions, respectively. 

Also in the above, 4)   is the blending function for the eigenvalue scaling in each of the 
coordinate directions.  This blending has been found to be useful for flow solutions using highly- 
stretched computational grids by Martinelli [1987].   The purpose of this function is to combine the 
artificial dissipation scale factors (that is, the spectral radii of the inviscid flux Jacobians) in each of 
the coordinate directions so that no one coordinate direction is artificially damped significantly 

more than any other.  Note that the exponent 6 in the definition of the blending function 
determines the level of blending; for example, 

6=0 scales the dissipation independently in each direction (anisotropically) 

and 

6 = 1 scales the dissipation identically in each direction (isotropically). 

For typical high Reynolds number grids, 6 = 0.50 has been found to be adequate. 

There are two other constants that have to be set by the user in Equation 3.5b; these are 

K^^^ and K^"*^.  The factors of 1/2 and 1/4 in Equations 3.6a and 3.6b are included so as to confine 

the typical values of K^^^ and K^"*^ to the range of 0.0 to 1.0. 

In Equation (3.6a), v can be interpreted as a pressure gradient "switch" that locally alters 
the artificial dissipation depending on the gradients present in the flow field.  This function 
essentially measures the rate of change of the pressure gradient in a particular coordinate direction. 
The way in which this function is incorporated in the definitions of the artificial dissipation scale 
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factors results in e^'*^ tending to zero in regions of rapid change in pressure gradient; while in the 

same regions, e^^^ approaches its maximum value.  Conversely, in regions where the pressure 
gradient is only slowly varying, the second-difference artificial dissipation will approach zero and 
there will remain only a background level of fourth-difference artificial dissipation.  In the original 
(compressible flow) implementation of this type of blended artificial dissipation, the intention was 
the sharp capmre of shock waves.   Near shock waves it was found that the fourth-difference 
artificial dissipation would cause overshoots that could negatively effect convergence.   If, however, 
the fourth-difference portion of the operator was turned off in the vicinity of a shock and the 
second-difference portion increased, shocks could be captured without overshoots.  Of course, this 
rendered the solution only first-order accurate near shocks, but it would remain second-order 
accurate in smooth regions of the flow field.  Although this work deals exclusively with 
incompressible, shock-free flow, this type of formulation is preserved for handling the possibility 
of nearly discontinuous, shock-like structures that may appear during the transient.  In most 
situations, however, this blended dissipation is not necessary for convergence.  For this reason, the 
following special cases are included in the formulation: 

If K(''> = 0, then 

and 

'■*7       2        ' 

6^^' ,    =  0.0 
'*7 

while if K^^^ = 0, then 

e<'',  = 0.0 

and 

^*^ = 4'c<^'<^. 

In other words, by choosing either of the constants to be zero, the dissipation operator can be made 
independent of the switching function and, as such, represent a pure second-difference or a pure 

fourth-difference dissipation.  Therefore, in these special cases, the coefficients K^^^ and K^"*^ 

approximatelv represent the fraction of the equivalent dissipation that would be present from first- 
order or second-order upwind discretizations of the inviscid convection terms in the governing 

equations.   For example, choosing K^^^ = 0.10 and K^"*^ = 0.0 implies a level of numerical 
dissipation of approximately ten percent of the level that would be present if first-order upwinding 
were used for the convection terms. 

The boundary treatment for the artificial dissipation follows that of Rizzi and 
Eriksson [1985].  Basically, the boundary and near-boundary cells are handled in a way that 
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ensures that both the second- and fourth-difference operators remain dissipative at the extremes of 
the domain. 

3.3 Time Integration 

To facilitate the description of the time stepping methodology, the residual is defined as 

R(U)ij, - P^E(U)^, ^ D{U),, . (3.10) 

It is important to note that this residual is composed of a number of distinct elements-recall that 
the vector E contains all of the discretized, physical spatial terms (that is, inviscid and viscous 
fluxes, as well as the radial momentum and average-passage source terms) and the vector D is the 
artificial dissipation operator described in Section 3.2.  This has important consequences in the 
implementation of the time stepping scheme.  Using the residual definition. Equation 3.10, the 
discrete governing equations may be written as 

-^{\U),,yol,, - R{U),, = 0 . (3.11) 

Equation 3.11 is then integrated in time to a steady-state solution using the explicit "hybrid 
multistage" scheme of Jameson, Schmidt, and Turkel [1981].  In its simplest manifestation, this 
four-stage Runge-Kutta-like scheme takes on the following form for the (ij.k)"' cell at the n"' time 
step: 

[/(I) = U" - a, -^ RiU") 
'Wol        ' 

Ijo.) ^ ijn _ a _^/j(t;(i)) 
^XVol 

t/") = [/" - a,-^/J(C/^') (3-12) 

V'' = U" - a,-^R(U-^'>) 
'XVol 

where 

ttj = 0.250, a^ = 0.333, a^ = 0.500, a^ = 1.000 , 

and the bracketed numerical superscripts denote provisional values. 

It turns out that evaluating the entire residual at each stage in Equation 3.12 can be very 
expensive (for example, the artificial dissipation operator, D, is roughly twice as expensive to 
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evaluate as just the inviscid portion of E).  In practice, it has been found that it is sufficient to 
evaluate the physical dissipation and artificial dissipation portions of R at the first stage only and 
freeze their values through subsequent stages.  This technique has only a very small detrimental 
effect on the size of the permissible time step, while saving significant computational time.   This 
selective evaluation of the different pieces of the residual at each stage is what distinguishes this 
type of scheme from a true Runge-Kutta scheme. 

In this work, a slightly different four-stage scheme is used.   The coefficients for the 
scheme presently used are 

aj = 0.250, a^ = 0.500, 0:3 = 0.550, Q;^ = 1.000 . 

This scheme was chosen because of its more effective high wave number damping characteristics 
relative to the "standard" scheme.  Although the permissible time step for this scheme is slightly 
less than the standard scheme, its high wave number damping gives it superior multigrid 
performance and overall faster convergence. 

3.4 Convergence Acceleration 

Several techniques are utilized to hasten the attainment of a steady-state solution to 
Equation 3.3.  The techniques used are: local time stepping, implicit residual averaging, and 
multigrid. 

3.4.1 Local Time Stepping 

Because the time coordinate in the governing equations is purely artificial, the transient 
behavior of the system may be freely manipulated to accelerate convergence to steady state (the 
introduction of the preconditioning matrix, P, was the first instance of this sort of manipulation). 
The rate of convergence is determined by how quickly errors can be removed from the solution 
domain.   There are essentially three mechanisms by which errors can be removed from the 
domain.   They can be damped by numerical (or physical) diffusion; they can be transported with 
the flow through the outflow boundary; or they can propagate "acoustically" out of the domain in 
any direction.  Excessive numerical damping will have a detrimental effect on the steady-state 
solution.  As such, the amount of artificial dissipation is generally kept as low as possible.  The 
most effective way to increase the convergence rate, therefore, is to maximize the computational 
rate at which information is propagated throughout the domain, or, in other words, to minimize the 
number of time steps necessary to propagate a signal over a given distance.  This is most easily 
done by advancing the solution for each cell in the domain through the maximum possible time step 
for that cell. 

To determine the maximum allowable time step, a Fourier analysis is carried out on a 
linearized form of the governing equations in generalized curvilinear coordinates.  The result of 
this analysis is a time step determined by two conditions imposed by the inviscid and viscous 
portions of the governing equations.  The inviscid lunitation on the permissible time step is the 
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familiar Courant-Friedrichs-Lewy (CFL) condition for the hyperbolic Euler equations.  In this case, 
it is formed directionally in the following way: 

(AtX, = CFL 
1 1 1 
  +   +   
At       At,      At, 
iff 

(3.13) 

ijk 

where the subscript "/" denotes inviscid and CFL is a stable Courant number for the multistage 
scheme in Equation 3.12.  The directional time steps are functions of the maximimi wave speeds 
(flux Jacobian spectral radii) in the respective computational coordinate directions.  For example, 

in the TI -direction. 

(K)i. = 7, ■'ijk 

Vol (3.14) 

ijk 

where i|;^ is as given in Equation 3.9; however, here the average value for a cell is used.  The C 

and 5 directions follow analogously. 

The viscous limitation on the permissible time step is a result of the parabolic or diffusive 
portions of the governing equations.   As such, it has terms dependent on the physical as well as 
artificial dissipation operators in Equation 3.3.  To derive the viscous stability bound, the 
methodology described by Kunz and Lakshimarayana [1992] was applied to the preconditioned 
pseudo-compressible equations of motion.  The resulting viscous time step limit can be expressed 
in the following way if the assimiption of grid orthogonality is made: 

(A/,),, = VON Vol 
r + r, + r, 
iff 

(3.15) 

V* 

where the subscript " V" denotes viscous and VON is a stable von Neumaim number for the 
multistage scheme.  The directional factors in the denominator have the following form: 

(r,),. Vol ' ' m 

where 

"r = 
1   +  V e 

and v^ is the eddy viscosity.  The values of e^   and e^   for a cell are computed using the average 

values of Equations 3.6a and 3.6b in the r|-direction for that cell.  The C and ? directions follow 
analogously. 
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The value of the allowable time step for a particular cell is then determined by simply 
taking the more restrictive of the two limits (Equations 3.13 and 3.15)-that is, 

6i..^ = min(Ar„Ar,,)^, . (3.16) 

Stable values for CFL and VON can be determined from an examination of the amplification factor 
of the multistage scheme (Equation 3.12).   Figure 3.4 shows contours of the amplification factor 
for the scheme used in this work.   The outer boundary of this region is the unit amplification 
contour-that is, neutral stability.  The maximum allowable Courant number is equal to the 
intercept of the unit contour with the imaginary axis, while the maximum allowable von Neumann 
number is given by the unit contour's intersection with the negative real axis.  A safe way to 
choose CFL and VON is to choose them such that the rectangle that they define lies completely 
within the stability region.  For the multistage scheme used in this work, a good choice is 

CFL = 2.0 ,   VON = 1.0 , 

with the corresponding rectangle shown in Figure 3.4. 

3.4.2 Implicit Residual Averaging 

Another widely used technique for accelerating the convergence of Runge-Kutta-type 
schemes is residual averaging (or smoothing).  The basic idea is to increase the allowable Courant 
and von Neumann numbers (and, hence, the size of the local time step) by increasing the spatial 
support of the discrete approximation.  One way to do this is to increase the number of stages in 
the multistage scheme.  Unfortunately, this is rather expensive computationally.  Another way to 
increase spatial support is to spatially average the residuals in some way.  That is, replace the 
residual, R, for a given cell with a new residual computed using residual information from 
neighboring cells.  Jameson [1983] found it most effective to carry out this averaging implicitly.  It 
turns out that increasing the time step a given amount in this manner is cheaper computationally 
than adding more stages to the time integration.  Also, implicit residual averaging has no imposed 
upper bound on the size of the increase in time step, as does the inclusion of additional stages 
(there are practical limits, however). 

Basically, residual averaging consists of the replacement of the residual, R, for a cell, 
defined by Equation 3.10, with an implicitly-averaged residual, R*, where R* is the solution to the 
following: 

In Equation 3.17, A^^, A^^, and A^^ are undivided second-difference operators and e , e^, e, 
are smoothing factors in the respective computational coordinate directions.  In this work, the 
smoothing factors are taken to be constants typically in the range of 0.0 to 1.0 (For the results 
shown in Chapter 4 they were each equal to 1.0.).  Equation 3.17 is solved by three successive 
block tridiagonal sweeps through the domain.  In practice, it is sufficient to replace the residuals in 
Equation 3.12 at the second and last stages only.  This is sufficient to approximately double the 
allowable time step. 
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3.4.3 Multigrid 

A multigrid strategy based on the technique outlined by Jameson and Baker [1984] is also 
implemented as a convergence acceleration technique.  Its implementation in a compressible 
average-passage formulation is outlined by Kirtley, Beach, and Adamczyk [1990].  Here, its 
application to the preconditioned, pseudo-compressible, average-passage equations is briefly 
described. 

The primary advantage of using a multigrid technique for the steady-state solution of the 
Euler or Navier-Stokes equations is the effectiveness of the multigrid procedure in eliminating low 
wave number errors from the solution domain.  This is especially attractive in the current 
application to turbomachine simulation for the following reason:  The boundary conditions used in 
this work require that the exit hub static pressure be periodically adjusted (or throttled) to draw the 
correct mass flow through the machine.   In the case of rotors, it is essential that the correct (or 
design) mass flow be simulated, as otherwise, the flow incidence angles and, hence, pressure 
loading of the rotor blades will be incorrect.  Each time the back pressure is adjusted, a pressure 
wave is sent upstream to readjust the flow accordingly.  These pressure waves are of very long 
wavelength and, as such, are slow to be removed by the multistage algorithm.  The multigrid 
procedure is a means by which long wavelength errors like these can be quickly removed by 
performing intermediate iterations on coarsened grids where the waves appear with higher wave 
nximbers. 

In this work, a standard "V-cycle" multigrid algorithm is utilized. The cycle consists of a 
series of multistage iterations on progressively coarser grids. Each coarse grid iteration includes a 
forcing function derived from information obtained from finer grid solutions. Once the coarsest 
grid in the sequence is reached and the corrections to the flow variables on this grid are computed 
by advancing the solution through a multistage iteration (or time step), a series of interpolation 
steps follow where corrections on each coarsened grid are interpolated to progressively finer grids. 
Ultimately, the flow variables on the finest grid are corrected and the cycle can begin again. 

Although the multigrid algorithm can theoretically be carried out over as many grid 
coarsenings as the finest grid can be evenly divided into, the current implementation of the scheme 
is limited to two grid coarsenings~that is, a three-level, V-cycle multigrid. 

Specifically, upon completion of a fine-grid iteration (or time step), the flow variables on 
the fine (h) grid are restricted to a coarsened (2h) grid by the following volume-weighted average: 

U^ = J  , (3.18) 

where the summation is over the eight fine-grid cells that make up one coarse-grid cell.  A forcing 
function is computed so that fine-grid accuracy is maintained for an iteration on the coarsened grid. 
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For the 2h grid, it is given as 

f2>,=R(^2,-ER(^,' (3.19) 

where R(U)2h is the residual computed on the coarse grid using the restricted variables from the 
fine grid. With the above definitions, the m"' stage of the multistage scheme on the 2h grid will 
look like 

t4f = U"   - a ■'2h     -   «^2A 
At 
Vol 

{/?(t/)r' -/^} . (3.20) 

One further coarsening is carried out to a 4h or doubly-coarsened grid, with U^ defined 
analogously to Equation 3.18.  The forcing function on this grid is given as 

f^ =R(U)^-I:{R(U)2>, -f^}- (3.21) 
8 

The m"^ stage of the multistage scheme for the 4h grid is then simply given by Equation 3.20 with 
the 2h subscripts everywhere replaced by 4h.  Upon completion of a time step on the 4h grid, the 
corrections to the 4h flow variables are then prolongated (interpolated) to the 2h grid using simple 
tri-linear interpolation.  The modified 2h flow variables are then used to calculate corrections to the 
flow variables on the 2h grid.  These corrections are then prolongated to the fine grid.  The 
corrected variables on the fine grid are then used to initiate the next fine-grid iteration and a three- 
level multigrid cycle is complete. 

It is important to note that on both of the coarsened grids (2/z and 4h), only the inviscid 
portions of the residuals are computed.  That is, R(U)2^ and R(U)^ are essentially Euler operators 
and, as such, no-flux solid surface velocity boundary conditions are applied on these grids 
regardless of whether the fine-grid flow is viscous or inviscid.  All other boundary conditions on 
the coarsened grids are the same as those used on the fine grid.  Also, just as in the case of a 
single-grid calculation, the coarsened-grid residual operators include an artificial dissipation 
operator.   Unlike the fine-grid calculation, however, the operator on 2h and 4h grids is a pure 
second-difference operator.  This is done to ensure effective high wave number damping on the 
coarsened grids.  Finally, all of the viscous effects and multiple-blade-row effects (average-passage 
source) are "felt" on the coarsened grids through the presence of the fine-grid residual in the 
definitions of the forcing functions,/2^ and/#,. 

3.5 Boundary Conditions 

In a blade passage, there are four distinct types of boundaries: inflow, outflow, solid 
surface, and periodic.  Figure 3.5 depicts schematically the boundary condition types and locations 
for a typical blade passage.   As this is a cell-centered finite-volume discretization, all boundary 
conditions are satisfied with the use of "phantom" cells located outside of the physical domain. 
The boundary conditions utilized for solid surfaces differ depending on whether the flow is viscous 
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or inviscid.  For all other types of boundaries, the boundary conditions are the same for either type 
of flow. 

Consistent with the hyperbolic character of the inviscid preconditioned pseudo-compressible 
equations of motion, at an inflow boundary, three conditions must be specified and a fourth 
extrapolated from inside the flow domain.  In this work, for both inviscid as well as viscous flow, 
the total pressure and two absolute flow angles are specified at the inflow plane; the static pressure 
is extrapolated from the interior. 

At an outflow boundary, the character of the governing equations dictates that one 
condition be specified and three other conditions extrapolated from the interior.  Here, the static 
pressure along the hub at the outflow plane is specified and integrated outward using simplified 
radial equilibrium—that is, 

^ = ^ (3.22) 
dr       r 

Also at this boundary, all three velocity components are extrapolated from the interior solution. 

Recall that the governing preconditioned pseudo-compressible average-passage equations 
are, by definition, periodic over the pitch of a blade passage.  As such, all flow variables are taken 
to be periodic upstream and downstream of the blade surfaces and in any hub or tip gap regions 
above or below the blades. 

On the blade, hub, and shroud (casing) surfaces, different boundary conditions are 
employed depending on whether the flow is inviscid or viscous.  For inviscid flow, the solid 
surface boundary condition for velocity is the familiar no-flux condition, while the pressure is 
obtained by an application of the normal momenmm equation for the surface in question.  For 
viscous flows, where there is adequate grid resolution in the boundary layer, a no-slip condition is 
satisfied for the velocity components.  For higher Reynolds number calculations where grid 
resolution is a problem, there is also a viscous slip velocity condition, where the slip velocity is 
determined by a law-of-the-wall-based wall function.  For both cases, the wall pressure is 
determined by assuming a zero normal pressure gradient at the wall.  Also, as mentioned by 
Kirtley, Beach, and Adamczyk [1990], some minor additional terms are included in the hub and 
shroud boundary conditions to ensure that a common axisyrametric solution is converged upon by 
all blade rows. 

3.6 Closure Modelling 

This work deals with the calculation of the average-passage flow fields associated with a 
single stage turbomachine—that is, two blade rows.  As such, the closure issues are concerned with 
only the ensemble averaging and the time averaging.  Specifically, these are the first two terms in 
the mixing stress relation of Equation 2.11, in addition to the blade force terms resulting from the 
time averaging of the momentum equations. 
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3.6.1 Reynolds Stress Closure 

The time-averaged Reynolds stress (the first term in Equation 2.11) is modelled using a 
familiar eddy viscosity construction.  Specifically, the algebraic eddy viscosity model of Baldwin 
and Lomax [1978] is used.  This model is a two-layer mixing-length-type model where the relevant 
length scale is based on the distance to the nearest wall.  In the current application, no special 
comer treatment is utilized.   In the wakes, a simple extrapolation procedure is used based on the 
eddy viscosity distribution at the trailing edge.   This extrapolation procedure assumes that the axial 
grid lines approximately follow the downstream trajectory of the wake.  The eddy viscocity 
distribution at the trailing edge is then exponentially decayed along these grid lines, as suggested 
by Adamczyk [1992].  To ensure that a common circumferentially-averaged flow field is obtained 
for all blade rows in a multiple-blade-row environment, the computed eddy viscosity for a blade 
passage is modified as described by Kirtley, Beach, and Adamczyk [1990]. 

3.6.2 Average-Passage Closure 

The temporal correlations (mixing stresses) and body forces resulting from the application 
of the time-averaging operator to the Reynolds-averaged Navier-Stokes equations are computed 
using a discretized version of the technique described in Section 2.3.  Recall that the methodology 
in Section 2.3 was formulated to calculate only that portion of the temporal correlation for a given 
blade row due to the velocity components that are steady with respect to neighboring rotating blade 
rows.  What follows is a brief outline of how, in practice, the average-passage flow fields for a 
two-blade-row turbomachine are determined.  It follows the method described by Adamczyk, 
Mulac, and Celestina [1986]. 

The form of the governing average-passage equations suggested by Equation 2.16 implies 
that the flow fields are to be calculated simultaneously.  In practice, however, a two-level iteration 
procedure is used.  In the inner iterations, the flow fields for the individual blade passages are 
updated using the multistage algorithm with the average-passage source term fixed.  In the outer 
iteration, the average-passage source terms are updated according to the formula from Section 2.3. 

For example, at the end of a series of iterations on the three-dimensional flow field 
through, say, blade row 1, the average-passage source term is calculated using a discrete version of 
Equation 2.15 with i = l.  Next, a series of iterations is calculated for the three-dimensional flow 
through blade row 2 utilizing the average-passage source term just calculated from the result for 
blade row 1.  Upon completion of these iterations, the average-passage source term for blade row 2 
is computed using the discretized Equation 2.15 with i=2.  Blade row 1 is then restarted with this 
updated source term and the cycle repeats.  This periodic "flipping" between blade rows using 
updated average-passage source terms is what is referred to as the outer iterations.  In effect, at the 
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4. Comparison of Numerical and Experimental Results 

The previous chapters have described the average-passage equations for a multiple-blade- 
row turbomachine and the numerical technique used to solve these equations.  This description 
includes a method to model the closure problem associated with a two-blade-row machine.  In this 
chapter, we use the resulting computer code (ISTAGE) to predict the flow through a two-blade-row 
pump.   As a first step towards code validation, this chapter presents comparisons between these 
numerical predictions and experimentally measured data. 

4.1 High Reynolds Number Pump Experiment 

Zierke, Straka, and Taylor [1993] acquired a large quantity of data within their high 
Reynolds number pump (HIREP) facility.  Figure 4.1 shows a computer-generated graphical image 
of the HIREP blades and the cylindrical coordinate system used for analyzing the experimental 
data.  This isometric view shows that HIREP contains 13 inlet guide vanes and 7 rotor blades with 
a significant circumferential blade lean or skew. The hub has a constant diameter of 21 inches, 
while a turmel liner creates a casing endwall with a constant diameter of 42 inches.  Using this 
nominal blade diameter, Zierke, Straka, and Taylor [1993] found a rotor blade tip speed of 
U^   =47.6 ft/sec while operating at the design point with 260 rpm.  Most of the data were 
acquired at this design point.  The experimental measurement techniques included rotor shaft 
torque and thrust cells, blade static-pressure taps, oil-paint surface flow visualization, cavitation 
visualization, laser light sheet visualization, slow- and fast-response pressure probes, and a two- 
component, laser Doppler velocimeter (LDV).  Five-hole pressure probe measurements of the 
inflow, 37% chord axially upstream of the inlet guide vanes, showed a nearly uniform, axial flow 
with a nominal reference velocity of 35 ft/sec.  However, the measurements indicated that the 
casing endwall boundary layer was fully turbulent with a boundary layer thickness of 0.71 inches. 
The mrbulent boundary layer on the hub was slightly less than 0.3 inches. 

Since this experiment involved the incompressible flow of water through a two-blade-row 
machine, the resulting database yields an excellent test case for this particular code.   In addition, 
with chord Reynolds numbers as high as 5,500,000, the database also gives a very challenging test 
case. 

4.2 Grid Generation 

Using the algebraic grid generation code of Beach [1990] and Beach and Hoffman [1992], 
we generated a computational grid for the single-stage HIREP geometry.  This grid generator was 
written specifically for the compressible average-passage formulation.  Basically, this interactive 
grid generator creates stacked, body-cohforming, H-type grids for multiple-blade-row 
turbomachines. 

A two-blade-row average-passage calculation (like HIREP) requires a total of three grids. 
There are two three-dimensional grids: one for an inlet guide vane (IGV) passage and one for a 
rotor blade passage.  Each of these grids extends from an inlet plane upstream of the inlet guide 
vanes to an exit plane downstream of the rotor blades.  Figures 4.2 and 4.3 shows slices of these 
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grids.  The three-dimensional grids used in this work contain 141 axial grid points and 45 points in 
both the radial and tangential directions.  Additionally, a common two-dimensional grid exists that 
defines the meridional domain (that is, the extent in the r,z-plane) of the mrbomachine.  It also 
contains 141 axial and 45 radial grid points.  Figure 4.4 shows this two-dimensional grid for the 
HIREP geometry.   It is through this plane that the two three-dimensional solutions "communicate." 
Body forces and correlations computed from the three-dimensional solution for one blade row are 
computed on this plane and are subsequently introduced into the three-dimensional domain of the 
other blade row.  Kirtley, Beach, and Adamczyk [1990] describe the interpolation procedure 
necessary to accomplish this interaction. 

In this application, we generated the three-dimensional grid for the rotor as if the blade 
physically extended from the hub all the way to the casing with no tip clearance.  In reality, the 
HIREP rotor included a nominal tip clearance of approximately 0.13 inches.  To model the 
clearance flow, therefore, we chose a grid index that most closely approximated the location of the 
physical blade tip.  A periodic boundary condition was then used for all eight cells between the tip 
index and the casing.  In other words, above the rotor blade tip, a periodic condition was imposed 
across the thickness of the blade tip section.  Note that we chose the tip grid index to correspond to 
the physical blade tip and did not include a discharge coefficient to model the vena contracta that 
occurs when the tip clearance flow separates.  The HIREP rotor blades had a rounded pressure side 
comer at the blade tip to prevent this separation and, thus, improve gap cavitation performance. 

In reality, both the inlet guide vanes and the rotor blades have fillets at their juncmres with 
the hub and casing.  Each inlet guide vane, therefore, includes a fillet at its root and tip, while 
each rotor blade includes a fillet at the root only (while the tip includes the rounded pressure side 
comer).  These fillets, however, are absent from the computational grid.  Neither gridding the true 
blade tip nor gridding fillets is technically beyond the capabilities of the grid generation code; 
however, making the simplifications just described does greatly simplify the grid generation 
process.  Moreover, neither geometric simplification should introduce undue error into the 
computational results. 

4.3 Solution Procedure 

The major assumption in the simulation of HIREP was the state of the incoming flow. 
Without prior knowledge of this inflow, we used the design inflow (from a streamline curvature 
simulation).   The design inflow was simply uniform axial flow.  Zierke, Straka, and Taylor [1993] 
subsequently found from measurements of the acmal flow field that a relatively thick boundary 
layer existed on the casing endwall upstream of the inlet guide vanes.  It is believed that the 
absence of this boundary layer in the simulation may be quite important to some of the results~an 
effect that we will later address. 

Acmally obtaining the average-passage solution for the HIREP geometry involved miming 
the computer code until a steady-state solution was reasonably approximated.  Running the code 
involved a series of "flips" between the two blade rows.  Each "flip" for a given blade row 
consisted of the calculation of a number of time steps (perhaps several hundred) on the three- 
dimensional grid for that blade row using the (axisymmetric) average-passage body forces and 
correlations from the other blade row from the previous "flip."  During the "flipping" of the 
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solutions, we monitored the mass flow.  If the mass flow through HIREP was too high or too low, 
we adjusted the exit hub static pressure (back pressure) accordingly.  This "throttling" of the 
simulation was a direct result of the total pressure/absolute flow angle inflow boundary condition 
discussed in the previous chapter.  The simulation was considered converged when the calculated 
mass flow equaled the design mass flow and both blade rows had converged to the same 
circumferentially-averaged flow field (recall that this was a necessary convergence criterion for the 
average-passage equations).  For the HIREP simulation, the calculated mass flow was about 1% 
lower than the design mass flow. 

4.4 Comparisons 

Using the computational grid generated for the HIREP geometry and the solution procedure 
just described, we obtained a converged solution for the HIREP flow field.  First, we shall discuss 
the simulation of the IGV flow field-including comparisons with the experimental database.  Then, 
we shall examine the flow field in the vicinity of the downstream rotor blades. 

4.4.1 Inlet Guide Vanes 

The first step in understanding the basic characteristics of a turbomachine flow field 
normally involves observation of the blade static-pressure distribution.  For the IGV static 
pressures, Figure 4.5 shows a comparison between numerical and experimental results at five 
spanwise locations.  Note that, in this figure, the pressure coefficient, K^,, is normalized by a 
dynamic pressure based on the blade tip speed—as defined by Zierke, Straka, and Taylor [1993]. 
Overall, the integrated blade loading agrees reasonably well at all five locations.  As each section 
is examined individually, we observe some differences in the predicted and measured distributions 
of pressure. 

At 10% span, a discrepancy exists between the prediction and experiment in the 
distribution of pressure near the leading edge.  At this location, lower pressures were measured 
than were predicted on both the suction and pressure surfaces.  Note that a similar discrepancy at 
this spanwise location was observed when Zierke, Straka, and Taylor [1993] compared the 
measurements to a lifting surface theory calculation of the flow field.  In the midspan regions 
(from 30% to 70% span), the suction surface pressures compare quite well with the measurements. 
However, at these same locations, on the pressure surface, the predictions show a distinct favorable 
pressure gradient near the trailing edge that is not present in the measurements.  This phenomenon 
reverses itself at the 90% span location, where a favorable pressure gradient was measured and an 
adverse pressure gradient was predicted. 

The contour plots of Figures 4.6 and 4.7 reinforce these previous observations.  Notice that 
the contours of measured static pressures are not extrapolated beyond the locations of the pressure 
taps.   Figure 4.6 shows good qualitative agreement over the entire suction surface.  For the 
pressure surface, on the other hand. Figure 4.7 shows good agreement to about 75% or 80% 
chord; beyond that location, the discrepancies mentioned previously are clearly evident.  The 
disagreement near the trailing edge on the pressure surface is most likely due to some unsteadiness 
in the flow solution there.  The trailing edge geometry of the inlet guide vane is essentially an 
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asymmetric chisel, with the bevel of the chisel lying on the suction side of the blade and the point 
of the chisel being somewhat rounded off.  As such, a small separation region exists in the bevel 
for the entire span of the blade.  Depending on the behavior of the wall function and turbulence 
model in this region, the predictions may quite possibly give an improperly located rear stagnation 
point.  The lack of a sharp trailing edge exacerbates this potential problem. 

In the IGV wake region, Figure 4.8 shows the velocity distributions at twelve spanwise 
locations located 49.7% chord axially downstream of the IGV trailing edge.   The figure compares 
the axial, radial, and tangential velocity components from the prediction with those measured using 
a rake of five-hole probes.  In order to make this comparison, we needed to perform a three- 
dimensional interpolation of the numerical results, since the grid lines did not lie in axial planes. 
At 4.8% span and, to a lesser extent, at 9.5% span, the axial velocity comparison shows that the 
predicted wake depth and width are smaller than the measurements.   Examination of the predicted 
flow field showed the comer separation on the suction surface to be smaller than the separation that 
was measured.  In the predicted flow field, this difference manifested itself downstream as a 
shallower, narrower wake.  Also, to conserve mass, the peak in the predicted axial velocity on the 
pressure side of the wake is greater than the measured peak. 

At larger spanwise locations. Figure 4.8 shows that the numerical predictions of axial 
velocity give deeper wakes than the five-hole probe measurements.   This result is surprising since 
the grid points at this axial location were more sparse than near the blade itself—which should yield 
larger numerical dissipation and a faster decay of the viscous wakes.  From 19.0% span to 76.2% 
span, the axial velocity comparisons show another surprise: A peak in the predicted axial velocity 
occurs on the suction side of the wake~a peak that does not occur in the measurements.   This peak 
appears outside of the viscous wake; and yet, this flow field location is too far downstream of these 
lightly-loaded inlet guide vanes to feel any potential flow effects.  The deeper, predicted wakes 
continue until the 95.2% span location, where the contamination of the measured wakes from 
vortices emanating from axially-running seams between tunnel liner sections made comparisons 
difficult. 

The circumferential variation of radial velocity in Figure 4.8 occurs because the spanwise 
variation in circulation on the inlet guide vanes gives rise to a trailing vortex sheet.  Avoiding the 
comparisons at 4.8%, 90.5%, and 95.2% span where calibration problems produced offsets in the 
radial velocity measurements, we see that the nimierical predictions compare very well with the 
five-hole probe measurements of the radial velocity variations.  Since the trailing vortex sheet is 
radially skewed, the sheet also leads to a circimiferential variation in tangential velocity.  The swirl 
produced by the inlet guide vanes also means that a small portion of the viscous wake profile will 
have a component of tangential velocity.  Figure 4.8 shows the resulting variation in tangential 
velocity.  Despite the measured blade-to-blade differences. Figure 4.8 shows good comparisons 
between predicted and measured tangential velocities.  Near the hub, the level of tangential velocity 
shows that the predictions give a little more swirl than what was measured. 

The circumferential variations of radial and tangential velocity can also be shown as 
secondary velocity vectors.  Figure 4.9 presents the flow within a plane normal to the axial 
direction with the local circumferential-mean velocity (found from area averaging) subtracted from 
both the predicted and measured velocities.  The resulting secondary velocity vectors follow closely 
to those defined by Smith [1955].  Both the predictions and measurements show that the trailing 
vortex sheet has deformed and rolled-up into two concentrated vortex structures rotating in opposite 
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directions.  The predicted locations of these two structures lies very close to the measured 
locations, although the measured vectors appear to be somewhat larger.  These two vortex 
structures induce a swirling motion in the potential portion of the passage flow.  Near the hub, the 
predicted location of this clockwise (looking upstream) motion matches the measured location; but 
near the casing, the predicted location of the counter-clockwise motion appears closer to the 
pressure side of the wake than the measured location. 

At this same axial location within HIREP, Figure 4.10 presents predicted and measured 
contours of total-pressure coefficient.  As with the secondary velocity vector plots, the predicted 
total-pressure contours are smoother than the measured plots since the numerical simulation 
contained more grid points than the experiment contained five-hole probe locations.  Both the 
predictions and measurements showed a slightly radially-skewed wake with similar levels of total- 
pressure coefficient.  Without the casing boundary layer used in the simulation inflow, the 
predictions do not show the correct total-pressure loss near the casing endwall.  This effect is even 
more evident after performing a circumferential average, as shown in Figure 4.11.  This figure 
shows higher levels of predicted total-pressure coefficient near the casing endwall, but lower 
predicted levels elsewhere.  The loss in total-pressure coefficient through most of the span (from an 
inlet value of unity) should be minimal through these lightly-loaded vanes.  Note that the 
measurements using the rake of five-hole probes shows that the values of total-pressure coefficient 
remain close to unity, while the measurements using the five-hole probe radial surveys acmally 
show values greater than unity.   Zierke, Straka, and Taylor [1993] explain that the experimental 
uncertainty is much greater for the radial surveys than for the rake surveys.  Figure 4.11 also 
shows a larger predicted gradient in the static-pressure profile than shown in the measurements of 
static pressure—a quantity difficult to measure away from solid surfaces. 

Finally, Figure 4.12 shows comparisons of predicted and measured values of the 
circumferentially-averaged velocity components.  Overall, these comparisons are quite good. 
However, Figure 4.12 clearly shows the absence of the correct inflow boundary layer on the casing 
endwall during the numerical simulation.  Consequently, in order to preserve the same mass flow, 
the numerical simulation results in smaller values of circumferentially-averaged axial velocities 
away from the endwalls. 

4.4.2 Rotor Blades 

Recall that the solution procedure used in the numerical simulation of HIREP consisted of a 
series of "flips" through which the three-dimensional solution of the IGV passage "communicated" 
with the three-dimensional solution of the rotor blade passage.  This "communication" occurred on 
a two-dimensional grid that contained updated axisymmetric body forces and correlations from the 
latest "flip" from one blade row solution to the other.  Through this procedure, the momentum and 
vorticity field from the IGV flow field solution described in the previous section is correctly 
transferred to the rotor blade flow field solution. And even though the momentum and vorticity 
field from the IGV flow field appears "smeared" to the rotor blades, the transfer of momenmm and 
vorticity that does take place should adequately model the effect of the inlet guide vanes on the 
time-average flow through the rotor blades.  The procedure also adequately models the potential 
flow effect of the rotor blades on the time-average flow through the inlet guide vanes. 
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Similar to our comparisons for the IGV flow field, we will initially compare the predicted 
and measured rotor blade static-pressure distributions.  Figure 4.13 shows that these comparisons 
for the rotor blades are even better than the comparisons for the inlet guide vanes in Figure 4.5- 
the rotor blade flow field showed less unsteadiness in the predictions near the trailing edge than did 
the IGV flow field.  Again using the pressure coefficient, K^, Figure 4.13 shows that both the 
blade loading and the local streamwise pressure gradients are well predicted at all spanwise 
locations.   The contour plots of Figures 4.14 and 4.15 also show very good agreement, especially 
when only comparing the predicted static-pressure contours within the regions where the measured 
contours are bounded by the locations of the pressure taps.  The suction surface static pressures of 
Figure 4.14 show an adverse pressure gradient over the last half of the blade, with the predictions 
showing some three-dimensional effects in the comer region were the trailing edge meets the hub 
endwall~a region where no pressure taps existed.  Figure 4.15 shows that the predictions also give 
some three-dimensional effects where the pressure surface trailing edge meets the hub endwall. 

Numerically integrating the predicted three-dimensional static-pressure distribution allows 
us to calculate net thrust and torque coefficients.  Figure 4.16 shows these calculations compared to 
the measured and design values.  At the design volumetric flow coefficient, the predicted torque 
coefficient matches both the measured and design values very well, with the predicted value being 
about 0.7% higher than the design value.  (The measured torque coefficient was 2% lower than the 
design value.) Comparisons of the thrust coefficient show that the predicted value is 8.5% higher 
than the design value.  While the acmal thrust coefficient is probably higher than the design value, 
the actual coefficient is most likely less than the measured value (which was 16% higher than the 
design value).  Zierke, Straka, and Taylor [1993] describe the difficulties that they had in 
performing this measurement-difficulties that led to greater measurement uncertainties.  Therefore, 
the simulation appears to give very reasonable predictions of rotor thrust since the predicted value 
in Figure 4.16 lies between the measured and design values. 

The significance of these types of numerical simulations lies in the ability to give three- 
dimensional, viscous flow information to the designer.  One very prominent characteristic of this 
flow field prediction is the existence and location of regions of boundary layer separation.  The 
next series of figures shows how well this numerical simulation predicts two types of three- 
dimensional separation. 

First, Figure 4.17 presents the predicted particle paths near the rotor hub endwall. 
Restricted to one grid point away from the hub, these particle paths follow the relative flow 
through the rotor blade passage and can be used to simulate limiting streamlines.  These limiting 
streamlines can be compared to the skin-friction lines found experimentally using an oil-paint 
technique and shown schematically in Figure 4.18.  Recall that limiting streamlines and skin- 
friction lines are indistinguishable, except for some differences that occur in the vicinity of lines of 
separation.  Both Figure 4.17 and Figure 4.18 show one type of three-dimensional separation.  Just 
upstream of the rotor blade leading edge, the hub endwall boundary layer separates at a saddle 
point, with a separation line passing through the saddle point and forming a C-pattem around the 
blade.  Although it is difficult to identify the exact location of the predicted saddle point from 
Figure 4.17, it appears that the predicted saddle point is a little closer to the leading edge than the 
measured saddle point in Figure 4.18.  The presence of the fillet (and possibly a thicker boundary 
layer) in the acmal flow field will cause the saddle point to lie further upstream of the predicted 
location.  Nevertheless, the numerical simulation does show the existence of the saddle point, as 
well as the measured movement of the pressure side leg of the separation line into the midpassage 
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region and the measured movement of the suction side leg of the separation hne up onto the suction 
surface as a result of some local flow overturning. The prediction of this type of three-dimensional 
separation is important since it corresponds to the development of horseshoe vortices. 

The measurements of Figure 4.18 also shows the existence of a saddle point near the 
suction surface trailing edge, as well as a corresponding line of secondary separation.  Clearly, the 
predicted particle paths in Figure 4.17 also show this secondary separation line and the probable 
existence of the saddle point.  As described by Zierke, Straka, and Taylor [1993], this secondary 
separation is related to the three-dimensional corner separation that occurs where the suction 
surface trailing edge meets the hub endwall.  Figure 4.19 shows the predicted particle paths of this 
comer separation on the suction surface, while Figure 4.20 shows a schematic of the skin-friction 
lines found from the oil-paint technique.  The predicted and measured patterns associated with this 
corner separation look remarkably similar, although the predictions do not show the existence of 
the spiral node as clearly as the measurements.  Both the predictions and the measurements also 
show a large amount of outward radial migration of the flow.  However, the measurements do 
show that the separation line that extends out to the blade tip lies further upstream of the trailing 
edge than predicted by the numerical simulation. 

Next, we shall compare the predictions with the measurements acquired on an axial plane 
32.2% chord axially downstream of the rotor tip trailing edge.  As with the flow downstream of 
the inlet guide vanes, we needed to perform a three-dimensional interpolation of the numerical 
results, since the grid lines did not lie in axial planes.  The predicted and measured axial velocity 
contours of Figure 4.21 both show the existence of the skewed rotor blade wakes.  The contour 
levels within these wakes are quite similar, with the nonuniform nature of the measured wakes 
arising from computing contours using LDV data from coarsely-spaced, discrete measurement 
locations.  As a matter of fact, all of the predicted and measured contours compare well in this 
plane, except for one very important region: the region near the rotor tip leakage vortex.  The 
measured tip leakage vortex appears further from the casing endwall than the predicted vortex, 
with the potential flow effects from the measured vortex extending much further into the flow field. 
Comparisons of the predicted and measured tangential velocity contours in Figure 4.22 
quantitatively give the same conclusions as the comparisons of the axial velocities. 

Similar to the numerical results downstream of the inlet guide vanes, we can plot the 
velocities downstream of the rotor blades using secondary velocity vectors, with the local 
circumferential-mean velocity (found from area averaging) subtracted from the predicted velocities. 
Figure 4.23 presents this vector plot.  No comparisons can be made of these predicted vectors with 
measured vectors since Zierke, Straka, and Taylor [1973] could not measure radial velocities with 
their two-component LDV system.   Similar to the IGV trailing vortex sheet, the rotor blade trailing 
vortex sheet has deformed and rolled-up into two concentrated vortex structures rotating in opposite 
directions.  While much of the swirling motion between vortex sheets has been induced by the 
sheets themselves, one can clearly observe the existence of the rotor tip leakage vortex, which 
again lies very close to the casing endwall. 

To more closely examine the position of the tip leakage vortex, we interpolated the 
numerical results at several axial planes downstream of the rotor tip trailing edge.   In order to 
identify the location of the vortex core, we plotted contours of static pressure on these interpolated 
planes, with the clearly marked position of the minimum static pressure giving the location of the 
core.  To summarize, Figure 4.24 shows the spanwise location of the vortex core compared to 
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measured values found from both LDV data and laser light sheet visualization.  This figure shows 
that the predicted core lies 2-3% span closer to the casing endwall, with the radial locations for 
both the predicted and measured cores changing very little downstream of the trailing edge. 

Since the predictions did not include an inlet boundary layer, the numerical simulation 
computed a smaller casing endwall boundary layer upstream of the rotor blades than shown 
experimentally (see Figure 4.12).   If the numerical simulation had computed a thicker boundary 
layer, the incidence angle at the rotor blade tip would have been larger and, subsequently, the 
strength of the rotor tip leakage vortex would increase.  Using the image vortex system that Chen, 
Greitzer, Tan, and Marble [1991] used within a rotor blade passage, a stronger vortex will change 
the strength of the image vortices.  Finally, the stronger image vortices should induce a motion on 
the tip leakage vortex that would cause the position of the tip leakage vortex to move further away 
from the casing endwall (and slightly further away from the rotor blade suction surface).  Later, 
we recomputed the HIREP flow field using the measured inflow.  Unfortunately, the revised 
numerical simulation did not predict a significant movement of the tip leakage vortex away from 
the casing endwall and, thus, the position of the vortex still disagreed with the measured position. 

Despite the discrepancies between the spanwise positions of the tip leakage vortex, 
Figure 4.25 shows that the positions of the predicted and measured vortex core agree very well in 
the blade-to-blade plane.  To better visualize the tip leakage vortex in the numerical simulation, we 
observed the paths of particles that were released at the edge of the clearance region and rolled-up 
into a vortex.  Observation of the paths of particles released near the trailing-edge tip reveals 
another interesting phenomenon.  These trailing-edge particle paths seem to roll-up into an 
independent vortex, that rotates with the same sense as the tip leakage vortex, but originates closer 
to the casing endwall.  Zierke, Straka, and Taylor [1993] identified this second vortex as a trailing- 
edge separation vortex, that originates when the blade boundary layer separates near the trailing 
edge in the presence of radial outward flow.  In a very similar experiment, Farrell [1989] was able 
to lower his tunnel pressure to a low enough level for cavitation to occur in both vortices. 
Figure 4.27 shows his photograph of this phenomenon-an observation very similar to the predicted 
particle paths of Figure 4.26.  Further, cavitation visualization performed by Farrell [1989] showed 
that these two vortices will eventually roll-up into a single vortex as they propagate downstream (as 
also indicated by the predictions in Figure 4.2b). 

For a more detailed comparison between the numerical simulation and the experiment. 
Figure 4.28 presents 15 spanwise plots of the circumferential variations of axial and tangential 
velocity at the axial plane 32.2% chord axially downstream of the rotor tip trailing edge.  At 2.9% 
span, the predictions match the LDV data fairly well, although the experiment indicates a flow 
strucmre on either side of the wake (possibly the horseshoe vortex) that is not predicted.  At larger 
spanwise locations, through 57.7% span, the predictions agree fairly well with the LDV data, 
although a few differences are worth noting.  At all these spanwise locations, the predicted viscous 
wakes are deeper than the measured wakes.  Also, by observing the centers of the wakes, the 
predicted wakes appear to be slightly more skewed than the measured wakes.  Finally, from 29.4% 
span to 57.7% span, the overall level of tangential velocity is more negative for the predictions, 
indicating the numerical simulation allows for more flow mming than the experiment. 

Closer to the casing endwall. Figure 4.28 shows poorer agreement between the predictions 
and the measurements.   First, as clearly shown from 81.3% span to 90.7% span, the predicted 
wakes are shallower than the measured wakes-the opposite trend from what we observed at 
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smaller spanwise locations.  During the HIREP experiment, Zierke, Straka, and Taylor [1993] 
acquired LDV data at 76.2% span and at several axial locations, in order to investigate wake 
decay.  Figure 4.29 presents comparisons of the predicted wakes with these LDV data.  All the 
measured wakes are narrower than the predicted wakes.  However, the measured wakes are deeper 
at 2.5% chord downstream of the trailing edge and reach a similar depth at 16.5% chord 
downstream-indicating a faster decay rate for the experimental wakes.  Recall that in the numerical 
simulation, the eddy viscosity downstream of the blades is extrapolated along axial grid lines.  If 
the axial grid lines do not reasonably follow the wake, then the predicted eddy viscosity in the 
wake will be too small.  Therefore, close to the trailing edge, one might expect reasonable 
agreement.   However, as the predicted wake moves downstream and strays from the region where 
the eddy viscosity exists, one might expect the wake depth to decay more like a laminar wake 
rather than a turbulent wake. 

Outside of the viscous wakes, in an essentially potential flow core. Figure 4.29 shows 
significant differences between the predictions and the measurements.   Figure 4.28 shows these 
same differences from 67.1% span to 86.0% span, the measured axial velocities show a greater 
hump, while the measured tangential velocities show a greater trough.  These flow structures result 
from potential flow eff'ects caused by the rotor tip leakage vortex and, since the predicted vortex 
lies closer to the casing endwall, the potential flow effect from the predicted vortex will not extend 
as far inboard.  From 90.7% span to 99.2% span, the discrepancies in the radial position of the tip 
leakage vortex core becomes even more apparent. 

The incorrect predicted radial position of the tip leakage vortex also impacts the 
circumferentially-averaged velocity profiles in Figure 4.30.  Near the casing endwall, the deficit in 
axial velocity results more from circumferentially averaging through the axial velocity deficits in 
the tip leakage vortex than from the endwall boundary layer. With the predicted vortex positioned 
nearer to the casing endwall, Figure 4.30 shows that the axial velocity deficit lies closer to the 
casing for the predictions than for the measurements.   This predicted deficit displaces less fluid 
away from the casing endwall and results in a smaller axial velocity through most of the span in 
order to have the same mass flow. Zierke, Straka, and Taylor [1993] point out that their 
experimental results do not average through any IGV wakes, and this also increases the 
circumferentially-averaged measurements relative to the predictions.  The tangential velocity profile 
compares fairly well near the endwalls; but again, the predictions exhibit more negative tangential 
velocity through most of the span.  The inlet guide vanes in HIREP were designed to place positive 
tangential velocity into the flow and the rotor blades were designed to take all of the swirl out of 
the flow at the blade tip and leave some negative tangential velocity in the flow at the blade root. 
Finally, the predictions agree with the HIREP design in that the predicted level of 
circumferentially-averaged radial velocity is zero for the entire span. 

Figure 4.31 shows the circumferentially-averaged predictions of the static- and total- 
pressure coefficients.  The nimierical simulation predicts a constant static pressure over the entire 
span, with the static pressures near the casing endwall predicted to be somewhat smaller than the 
pressure tap measurements.   Figure 4.31 also compares the predicted total pressures with those 
measured with radial Kiel probe surveys at two circumferential positions of the inlet guide vanes. 
If these experimental surveys would have been acquired for many IGV positions and then 
circumferentially averaged, these averaged values of total-pressure coefficient would probably agree 
quite well with the predicted values.  Before we performed the circumferential averaging, the total- 
pressure coefficients varied as they appear in the contour plot of Figure 4.32. The higher regions 
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of loss appear as low regions of total pressure in the rotor blade wakes and near the endwalls. 
Figure 4.32 agrees qualitatively with that data the Zierke, Straka, and Taylor [1993] measured with 
a fast-response total-pressure probe. However, these measurements could only measure total- 
pressure variations and also included an IGV wake and, therefore, we could not make a direct 
comparison with the predictions. 

40 



5. Summary and Conclusions 

A system of equations is presented governing the average-passage flow through a multiple- 
blade-row turbomachine operating in the incompressible flow regime.  The governing equations 
result from the sequential application of three averaging operators to the incompressible, Navier- 
Stokes equations.  A procedure for closing this averaged system of equations is also described.  To 
facilitate numerical treatment, the governing equations are cast in a preconditioned, pseudo- 
unsteady form.  It is important that the averaging operators be carried out before casting the 
equations in the pseudo-unsteady form.  The inclusion of the preconditioning matrix allows for 
better control of the solution transient. 

An explicit numerical treatment is outlined to approxunate solutions to the governing 
equations.  Basically, this procedure follows the fairly standard four-stage Runge-Kutta time- 
stepping scheme applied to a cell-centered finite-volume discretization for hexahedral cells.  Several 
convergence acceleration techniques-including local time stepping, implicit residual smoothing, 
and multigrid~are applied to this scheme in order to improve its efficiency.  Also, boundary 
conditions appropriate for an average-passage simulation are presented.  Finally, the practical 
aspects of numerically closing the discretized governing equations are discussed.  Specifically, a 
two-tier iteration procedure is described, where the inner iterations update the three-dimensional 
solutions for each blade row and the outer iterations update the average-passage source for each 
blade row. 

An experimental investigation is briefly described involving detailed measurements made of 
the incompressible flow field in a high Reynolds number pump.   This 42-inch diameter pump 
includes two blade rows that operate within a 48-inch diameter water tunnel.  A numerical 
simulation using the incompressible, average-passage equations was performed in order to compare 
with these flow field measurements. 

Comparisons between the computed and measured static pressures on the inlet guide vanes 
show reasonable predictions of blade loading.  However, some discrepancies occur in the pressure 
distributions near the trailing edge at midspan.  The IGV wake velocity profiles also show 
reasonable comparisons near the endwalls, with the largest discrepancies (especially in axial 
velocity) occurring near midspan.  Residual unsteadiness in the numerical solutions probably 
account for the discrepancies in the pressure and velocity flow fields near the IGV trailing edge at 
midspan.  This unsteadiness is most likely due to the combination of the bluntness of the IGV 
trailing edge and the poor performance of the Baldwin-Lomax eddy viscosity model in the wake 
regions (at least for this grid).  Comparison of the total-pressure contours and the 
circumferentially-averaged pressures and velocities show good agreement away from the casing 
endwall, where the calculation lacked the proper inflow boundary layer. 

Comparisons of the computed and measured rotor blade static-pressure distribution show 
excellent agreement at all radial locations.  As such, the integrated effect of the computed rotor 
blade pressures gave good agreement with the measured torque and thrust.  Computed particle 
pathlines on the rotor hub and suction surfaces qualitatively captured the essential separation 
features showed by the experimental skin-friction lines.  Inadequate grid resolution probably led to 
any discrepancies in these comparisons.  Comparisons of the contours of the axial and tangential 
velocities downstream of the rotor blades show qualitative agreement away from the casing 
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endwall.   Near the casing, the lack of the correct inflow boundary layer had some detrimental 
effect.  However, even this improper inflow boundary condition cannot completely explain why the 
calculated tip leakage vortex lies closer to the casing than the measured vortex.  Despite this 
discrepancy in the radial location of the tip leakage vortex, the blade-to-blade trajectory appears to 
agree quite well with the measurements.   The computations also appear to capture the essential 
character of the measured leakage flow; that is, a primary vortex exists, as well as a weaker 
trailing-edge separation vortex. 

Downstream of the rotor blades, comparisons of wake velocity profiles show qualitative 
agreement away from the endwalls.  Very close to the hub, inadequate grid resolution and the 
subsequent lack of a well-defined horseshoe vortex in the calculation are probably the culprits. 
Beyond about 70% span, the discrepancy in the radial location of the tip leakage vortex causes 
differences in the computed and measured velocity profiles.  At 76.2% span, the measured wakes 
decay more rapidly than the predicted wakes.  This is most certainly a manifestation of the current 
implementation of the Baldwin-Lomax model in the wake region.  Finally, as with the IGV flow 
field, comparisons of the total-pressure contours and the circimiferentially-averaged pressures and 
velocities downstream of the rotor blades show good agreement away from the casing endwall, 
where the calculation lacked the proper inflow boundary layer. 

The comparisons in this investigation represent an initial validation case of the numerical 
algorithm for the simulation of incompressible flow within a multiple-blade-row turbomachine, as 
outlined previously.  For the most part, the comparisons indicate that the model does an adequate 
job of predicting many of the essential flow features present in a multiple-blade-row environment. 
For example, blade pressure distributions are predicted quite well-as well as the overall 
performance, as indicated by circumferentially-averaged quantities and rotor blade torque and 
thrust.  Also, certain highly three-dimensional effects like leakage vortices and comer separations 
can be qualitatively predicted.  On the other hand, it appears as though the behavior of the 
turbulence model in wake regions consistently causes problems in predicting wake velocity profiles 
(at least for this grid).  Therefore, the most pressing need for the numerical simulation of the 
incompressible, average-passage flow through a multiple-blade-row turbomachine appears to be a 
turbulence model that better represents the physics in wake regions. 
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Figure 3.3       Directed Areas from a Generic Finite-Volume Cell 
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4.1       Isometric View of the HIREP Blades with the Cyhndrical Coordinate System 
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Figure 4.5        IGV Static-Pressure Distribution 
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Figure 4.13      Rotor Blade Static-Pressure Distribution 
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4.18     Schematic of Surface Flow Visualization on the Rotor Blade Hub Surface 
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